
UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 1

From New Technologies to New Solutions:
Exploiting FRAM Memories to Enhance Physical

Security

Stéphanie Kerckhof, François-Xavier Standaert, Eric Peeters

CARDIS 2013 – November 2013

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 2

Context

Ferroelectric RAM (FRAM):

I non-volatile RAM using special dielectric material

I Integrated in Texas Instruments microcontrollers

Flash FRAM

Program memory only Unified memory
105 reprogramming 1015 reprogramming

1 page (256 bytes) at a time 1 byte at a time
4,5 ms per page write or erase a few clock cycles per byte

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 2

Context

Ferroelectric RAM (FRAM):

I non-volatile RAM using special dielectric material

I Integrated in Texas Instruments microcontrollers

Flash FRAM

Program memory only Unified memory
105 reprogramming 1015 reprogramming

1 page (256 bytes) at a time 1 byte at a time
4,5 ms per page write or erase a few clock cycles per byte

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 3

Context

I non-volatile memory useful for countermeasures needing
secure precomputations

I Two questions:
I FRAM as a more secure technology against side channel

attacks?
I FRAM as a more efficient way to implement existing

countermeasures?

I We follow the second approach:
I Improving past results → Shuffling
I Making new results possible → Masking with RLUT

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 3

Context

I non-volatile memory useful for countermeasures needing
secure precomputations

I Two questions:
I FRAM as a more secure technology against side channel

attacks?
I FRAM as a more efficient way to implement existing

countermeasures?

I We follow the second approach:
I Improving past results → Shuffling
I Making new results possible → Masking with RLUT

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 3

Context

I non-volatile memory useful for countermeasures needing
secure precomputations

I Two questions:
I FRAM as a more secure technology against side channel

attacks?
I FRAM as a more efficient way to implement existing

countermeasures?

I We follow the second approach:
I Improving past results → Shuffling
I Making new results possible → Masking with RLUT

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 4

Outline

1 Improving Past Results: Shuffling
What is Shuffling?
Previous Implementation
FRAM Implementation

2 Making New Results Possible: Masking with RLUT

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 5

What is Shuffling?

Shuffling: Modifies the order in which independent operations
are performed

Example:

S(x0)

S(x1)

S(x2)

S(x15)

S(x7)

S(x0)

S(x15)

S(x1)

Normal execution Shuffled execution

time

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 6

What is Shuffling?

Goal:
I Spread points of interest over t cycles
I Amplify physical noise by forcing the adversary to combine

multiple points

...
S(x7)

S(x0)

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 6

What is Shuffling?

Goal:
I Spread points of interest over t cycles
I Amplify physical noise by forcing the adversary to combine

multiple points

...
S(x7)

S(x0)

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 6

What is Shuffling?

Goal:
I Spread points of interest over t cycles
I Amplify physical noise by forcing the adversary to combine

multiple points

...

S(x7)

S(x0)

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 6

What is Shuffling?

Goal:
I Spread points of interest over t cycles
I Amplify physical noise by forcing the adversary to combine

multiple points

...
S(x7)

S(x0)

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 7

Outline

1 Improving Past Results: Shuffling
What is Shuffling?
Previous Implementation
FRAM Implementation

2 Making New Results Possible: Masking with RLUT

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 8

Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 8

Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 8

Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. Shuffle program memory

2. Execute S(x7)

3. Execute S(x0)

4. Execute S(x15)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 8

Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. Shuffle program memory

2. Execute S(x7)

3. Execute S(x0)

4. Execute S(x15)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 8

Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. Shuffle program memory

2. Execute S(x7)

3. Execute S(x0)

4. Execute S(x15)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 9

Outline

1 Improving Past Results: Shuffling
What is Shuffling?
Previous Implementation
FRAM Implementation

2 Making New Results Possible: Masking with RLUT

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 10

Shuffling with FRAM

Setup:

I MSP430FR5739 Texas Instrument microcontroller

I 16-bit RISC CPU

I 16 kB of FRAM

Implementation of the countermeasure:

I Definition of an AES having sets of 16 independent
operations

I Addition of dummy key-schedule operations

I Access to FRAM memory between each operation

Security evaluation:

I Similar to the one presented at Asiacrypt 2012

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 11

Shuffling with FRAM

Code Size Data Size

Unprotected AES 1076 52

Shuffled AES

Perm. Generation 194 18
Code Shuffling 418 0
AES execution 2404 146

Total 3016 164

I Unshuffled version of AES for reference

I Difference between unprotected and shuffled AES mainly
due to dummy key schedule

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 12

Shuffling with FRAM

Cycle Count

Unprotected AES 5800

Shuffled AES

Perm. Generation 2240
Code Shuffling 2751
AES execution 8479

Total 13470

I TI microcontrollers only have 12 available registers
I Intermediate state must be stored in memory
I TI implementation slower than AVR one (3546 cycles)

I Precomputation time divided by 100 compared to AVR:
I 0,19 ms (at 16 MHz) vs 18 ms

I Difference between unprotected and shuffled AES mainly
due to dummy key schedule

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 13

Outline

1 Improving Past Results: Shuffling

2 Making New Results Possible: Masking with RLUT
Description of RLUT contermeasure
Application to Reduced LED
Results

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

S(x m k)

L1

L2

L3

L4

S

C

k

S(x k)

a
L2

b

Typical boolean masking of order 1

I G1, G2, R and RC are precomputed
I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

S(x m k)

L1

L2

L3

L4

S

C

k

S(x k)

a
L2

b

P
k

Key addition included in precomputed table Pk

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

L1 L3

L4

Pk

C

x m
Pk(x m)

Pk(x)

L2
a

L2
b

Key addition included in precomputed table Pk

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

a3

G2
x

m

q

L1 L3

L4

Pk

C

x m
Pk(x m)

Pk(x)

L2
a

L2
b

a1

G1

I Replace of x ⊕m operations by Gi = x ⊕m ⊕ ai
I ai = precomputed random mask

I G1, G2, R and RC are precomputed
I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

L1 L3

L4

Pk

C’

Pk(G1(x,m))

G2 Pk(x)

G1

G1(x,m)

L2
a

L2
b

I Replace of x ⊕m operations by Gi = x ⊕m ⊕ ai
I ai = precomputed random mask

I G1, G2, R and RC are precomputed
I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

a2

R

x

m

q

L1 L3

L4

Pk

C’

Pk(G1(x,m))

G2 Pk(x)

G1

G1(x,m)

L2
a

L2
b RC

Randomization of Pk (and C) using a random variable

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

L1 L3

L4

R

RC

R(G1(x,m))

iG2 Pk(x)

G1

G1(x,m)

L2
a

L2
b

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

L1 L3

L4

R

RC

R(G1(x,m))

iG2 Pk(x)

G1

G1(x,m)

L2
a

L2
b

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 14

Masking with Randomized Look Up Tables (RLUT)

x

m

q

L1 L3

L4

R

RC

R(G1(x,m))

iG2 Pk(x)

G1

G1(x,m)

L2
a

L2
b

I G1, G2, R and RC are precomputed

I Unconditional security if secure precomputations

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 15

Outline

1 Improving Past Results: Shuffling

2 Making New Results Possible: Masking with RLUT
Description of RLUT contermeasure
Application to Reduced LED
Results

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 16

Application to Reduced LED

Reduced version of LED:

I 16-bit state

I 1 to 4 rounds

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 17

Application to Reduced LED

Implementation details:

I 16 kB TI FRAM microcontroller

I LFSR with CRC-32 polynomial used to generate random
variables ai

I Efficient arrangement of the 4-bit precomputed tables in
memory

I MixColumn layer applied on each of the shares

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 18

Outline

1 Improving Past Results: Shuffling

2 Making New Results Possible: Masking with RLUT
Description of RLUT contermeasure
Application to Reduced LED
Results

3 Conclusion

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 19

Results - Program Size

0

1000

2000

3000

4000

1 2 3 4
Number of rounds

P
ro

gr
am

si
ze

[b
yt

es
] Implementation

Prediction [SPV 2012]

I Prediction in terms of number of rounds, number of
S-Boxes and S-Box size

I Offset between curves = LED program size

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 20

Results - Precomputation Time

0

40 000

80 000

120 000

160 000

0

1 000

2 000

3 000

4 000

1 2 3 4
Number of rounds

C
yc

le
co

u
n

t
E

lem
en

tary
op

eration
s

Implementation
Prediction [SPV 2012]

I Prediction in terms of elementary operations

I Here, 1 elementary operation ≈ 40 clock cycles

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 21

Results - Observations

I Memory and time requirements can be predicted for the
parameters of any cipher

I Full LED implementation requires:
I 70 kB of memory (128kB FRAM microcontroller soon

available)
I A precomputation time of 35 ms at 16 MHz

I Possible performances vs security tradeoffs:
I Partial masking with RLUT
I Partial refreshing of the precomputed tables

(e.g.: refreshing 10% of the table takes as much cycles as
order 3 masking scheme)

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 22

Conclusion

I FRAM enables efficient implementation of
countermeasures needing precomputations

I Improvement for the shuffling countermeasure
I Makes the RLUT masking possible

I If secure precomputation is possible, RLUT provides
unconditional security against side-channel attacks

I Future scope of research:
I Impact of partial recomputation in leaking environment
I Design of block ciphers suited to implementation with

RLUT

UCL Crypto Group
Microelectronics Laboratory Exploiting FRAM Memories - November 2013 23

Thank you!

	Improving Past Results: Shuffling
	What is Shuffling?
	Previous Implementation
	FRAM Implementation

	Making New Results Possible: Masking with RLUT
	Description of RLUT contermeasure
	Application to Reduced LED
	Results

	Conclusion

