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Context

Ferroelectric RAM (FRAM):

I non-volatile RAM using special dielectric material

I Integrated in Texas Instruments microcontrollers

Flash FRAM

Program memory only Unified memory
105 reprogramming 1015 reprogramming

1 page (256 bytes) at a time 1 byte at a time
4,5 ms per page write or erase a few clock cycles per byte
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Context

I non-volatile memory useful for countermeasures needing
secure precomputations

I Two questions:
I FRAM as a more secure technology against side channel

attacks?
I FRAM as a more efficient way to implement existing

countermeasures?

I We follow the second approach:
I Improving past results → Shuffling
I Making new results possible → Masking with RLUT
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Outline

1 Improving Past Results: Shuffling
What is Shuffling?
Previous Implementation
FRAM Implementation

2 Making New Results Possible: Masking with RLUT

3 Conclusion
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What is Shuffling?

Shuffling: Modifies the order in which independent operations
are performed

Example:

S(x0)

S(x1)

S(x2)

S(x15)

S(x7)

S(x0)

S(x15)

S(x1)

Normal execution Shuffled execution

time
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What is Shuffling?

Goal:
I Spread points of interest over t cycles
I Amplify physical noise by forcing the adversary to combine

multiple points

...
S(x7)

S(x0)
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Shuffling - Randomized Program Memory

1. Shuffle program memory

2. Execute S(x0)

3. Execute S(x1)

4. Execute S(x2)

5. Execute S(x3)
...

1. 7

2. 0

3. 15

4. 3

Permutation

Data MemoryProgram Memory

...

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012
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Shuffling with FRAM

Setup:

I MSP430FR5739 Texas Instrument microcontroller

I 16-bit RISC CPU

I 16 kB of FRAM

Implementation of the countermeasure:

I Definition of an AES having sets of 16 independent
operations

I Addition of dummy key-schedule operations

I Access to FRAM memory between each operation

Security evaluation:

I Similar to the one presented at Asiacrypt 2012
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Shuffling with FRAM

Code Size Data Size

Unprotected AES 1076 52

Shuffled AES

Perm. Generation 194 18
Code Shuffling 418 0
AES execution 2404 146

Total 3016 164

I Unshuffled version of AES for reference

I Difference between unprotected and shuffled AES mainly
due to dummy key schedule
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Shuffling with FRAM

Cycle Count

Unprotected AES 5800

Shuffled AES

Perm. Generation 2240
Code Shuffling 2751
AES execution 8479

Total 13470

I TI microcontrollers only have 12 available registers
I Intermediate state must be stored in memory
I TI implementation slower than AVR one (3546 cycles)

I Precomputation time divided by 100 compared to AVR:
I 0,19 ms (at 16 MHz) vs 18 ms

I Difference between unprotected and shuffled AES mainly
due to dummy key schedule
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2 Making New Results Possible: Masking with RLUT
Description of RLUT contermeasure
Application to Reduced LED
Results

3 Conclusion
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Masking with Randomized Look Up Tables (RLUT)

x 

m 

q 

S(x    m    k) 

L1 

L2 

L3 

L4 

S 

C 

k 

S(x    k) 

a 
L2 

b 

Typical boolean masking of order 1

I G1, G2, R and RC are precomputed
I Unconditional security if secure precomputations
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a3 

G2 
x 

m 

q 

L1 L3 

L4 

Pk 

C 

x     m 
Pk(x    m) 

Pk(x) 

L2 
a 

L2 
b 

a1 

G1 

I Replace of x ⊕m operations by Gi = x ⊕m ⊕ ai
I ai = precomputed random mask

I G1, G2, R and RC are precomputed
I Unconditional security if secure precomputations
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Masking with Randomized Look Up Tables (RLUT)
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Application to Reduced LED

Reduced version of LED:

I 16-bit state

I 1 to 4 rounds
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Application to Reduced LED

Implementation details:

I 16 kB TI FRAM microcontroller

I LFSR with CRC-32 polynomial used to generate random
variables ai

I Efficient arrangement of the 4-bit precomputed tables in
memory

I MixColumn layer applied on each of the shares
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Results - Program Size
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I Prediction in terms of number of rounds, number of
S-Boxes and S-Box size

I Offset between curves = LED program size
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Results - Precomputation Time
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I Prediction in terms of elementary operations

I Here, 1 elementary operation ≈ 40 clock cycles
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Results - Observations

I Memory and time requirements can be predicted for the
parameters of any cipher

I Full LED implementation requires:
I 70 kB of memory (128kB FRAM microcontroller soon

available)
I A precomputation time of 35 ms at 16 MHz

I Possible performances vs security tradeoffs:
I Partial masking with RLUT
I Partial refreshing of the precomputed tables

(e.g.: refreshing 10% of the table takes as much cycles as
order 3 masking scheme)
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Conclusion

I FRAM enables efficient implementation of
countermeasures needing precomputations

I Improvement for the shuffling countermeasure
I Makes the RLUT masking possible

I If secure precomputation is possible, RLUT provides
unconditional security against side-channel attacks

I Future scope of research:
I Impact of partial recomputation in leaking environment
I Design of block ciphers suited to implementation with

RLUT
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Thank you!
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