From New Technologies to New Solutions:
Exploiting FRAM Memories to Enhance Physical
Security

Stéphanie Kerckhof, Francois-Xavier Standaert, Eric Peeters

CARDIS 2013 — November 2013

(el e Ciy Exploiting FRAM Memories - November 2013 1 ’j



Context

Ferroelectric RAM (FRAM):
» non-volatile RAM using special dielectric material

» Integrated in Texas Instruments microcontrollers

(el e Ciy Exploiting FRAM Memories - November 2013




Context

Ferroelectric RAM (FRAM):
» non-volatile RAM using special dielectric material

» Integrated in Texas Instruments microcontrollers

Flash FRAM
Program memory only Unified memory
10° reprogramming 10% reprogramming
1 page (256 bytes) at a time 1 byte at a time
4.5 ms per page write or erase | a few clock cycles per byte

(el e Ciy Exploiting FRAM Memories - November 2013



Context

» non-volatile memory useful for countermeasures needing
secure precomputations

WClL Gty Cioy FRAM Memories - November 2013




Context

» non-volatile memory useful for countermeasures needing
secure precomputations

» Two questions:
» FRAM as a more secure technology against side channel

attacks?
» FRAM as a more efficient way to implement existing

countermeasures?

(el e Ciy g FRAM Memories - November 2013




Context

» non-volatile memory useful for countermeasures needing
secure precomputations

» Two questions:
» FRAM as a more secure technology against side channel
attacks?
» FRAM as a more efficient way to implement existing
countermeasures?

» We follow the second approach:

» Improving past results — Shuffling
» Making new results possible — Masking with RLUT

(el e Ciy Exploiting FRAM Memories - November 2013




Outline

Improving Past Results: Shuffling
m What is Shuffling?
m Previous Implementation
m FRAM Implementation

Making New Results Possible: Masking with RLUT

Conclusion

(el e Ciy Exploiting FRAM Memories - November 2013



What is Shuffling?

Shuffling: Modifies the order in which independent operations
are performed

Example:
Normal execution Shuffled execution
] S(xo) S(x7)
S(x1) S(x0)
time
S(x2) S(x15)

N S(xs) S(x)

(el e Ciy Exploiting FRAM Memories - November 2013



What is Shuffling?

Goal:
» Spread points of interest over t cycles
» Amplify physical noise by forcing the adversary to combine
multiple points

(el e Ciy Exploiting FRAM Memories - November 2013 6 ’;}



What is Shuffling?

Goal:
» Spread points of interest over t cycles
» Amplify physical noise by forcing the adversary to combine
multiple points

5(x0)

(el e Ciy Exploiting FRAM Memories - November 2013 6 ’;}



What is Shuffling?

Goal:
» Spread points of interest over t cycles
» Amplify physical noise by forcing the adversary to combine
multiple points

(el e Ciy Exploiting FRAM Memories - November 2013



What is Shuffling?

Goal:
» Spread points of interest over t cycles
» Amplify physical noise by forcing the adversary to combine
multiple points

(el e Ciy Exploiting FRAM Memories - November 2013



Outline

Improving Past Results: Shuffling
m What is Shuffling?
m Previous Implementation
m FRAM Implementation

(el e Ciy Exploiting FRAM Memories - November 2013 7 ’)




Shuffling - Randomized Program Memory

Program Memory

A

N
Shuffle program memory

Execute S(xo)
Execute S(x1)
Execute S(x2)

Execute S(x3)

Data Memory

r

Permutation

~

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

UCL Crypto Group

Exploiting FRAM Memories - November 2013




Shuffling - Randomized Program Memory

Program Memory

— | 1. Shuffle program memory
2. Execute S(xp)
3. Execute S(x1)
4. Execute S(x2)
5. Execute S(x3)
L ]

Data Memory

r

Permutation

~

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

(el e Ciy Exploiting FRAM Memories - November 2013




Shuffling - Randomized Program Memory

Program Memory

Shuffle program memory

Data Memory

r

Execute S(x7)
Execute S(xg) <——
Execute S(xi5) <—|
Execute S(x3) <«—— |

AN

. J

Permutation

~

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

(el e Ciy Exploiting FRAM Memories - November 2013




Shuffling - Randomized Program Memory

Program Memory
( R

1. Shuffle program memory
— | 2. Execute S(x7)

3. Execute S(xo)

4. Execute S(xi5)

5. Execute S(x3)

Data Memory

r

Permutation

~

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

(el e Ciy Exploiting FRAM Memories - November 2013




Shuffling - Randomized Program Memory

Program Memory
( 1
Shuffle program memory

Execute S(x7)
Execute S(xo)
Execute S(xi5)

|
o sl N =

Execute S(x3)

Data Memory

r

Permutation

~

Proposed by Veyrat-Charvillon et al. at Asiacrypt 2012

(el e Ciy Exploiting FRAM Memories - November 2013




Outline

Improving Past Results: Shuffling
m What is Shuffling?
m Previous Implementation
m FRAM Implementation

(el e Ciy Exploiting FRAM Memories - November 2013 9 ’)




Shuffling with FRAM

Setup:
» MSP430FR5739 Texas Instrument microcontroller
» 16-bit RISC CPU
» 16 kB of FRAM

Implementation of the countermeasure:

» Definition of an AES having sets of 16 independent
operations

» Addition of dummy key-schedule operations

» Access to FRAM memory between each operation

Security evaluation:
» Similar to the one presented at Asiacrypt 2012

(el e Ciy Exploiting FRAM Memories - November 2013 10 ’@




Shuffling with FRAM

Code Size Data Size

Unprotected AES 1076 52
Perm. Generation 194 18
Code Shuffling 418 0
Shuffled AES AES execution 2404 146
Total 3016 164

» Unshuffled version of AES for reference

» Difference between unprotected and shuffled AES mainly
due to dummy key schedule

(el e Ciy Exploiting FRAM Memories - November 2013 11 "}



Shuffling with FRAM

Cycle Count
Unprotected AES 5800
Perm. Generation 2240
Code Shuffling 2751
Shuffled AES AES execution 8479
Total 13470

» TI microcontrollers only have 12 available registers
> Intermediate state must be stored in memory
» Tl implementation slower than AVR one (3546 cycles)
» Precomputation time divided by 100 compared to AVR:
» 0,19 ms (at 16 MHz) vs 18 ms
» Difference between unprotected and shuffled AES mainly
due to dummy key schedule

(el e Ciy Exploiting FRAM Memories - November 2013 12 ";



Outline

Making New Results Possible: Masking with RLUT
m Description of RLUT contermeasure
m Application to Reduced LED
m Results

(el e Ciy Exploiting FRAM Memories - November 2013 13 ’)




Masking with Randomized Look Up Tables (RLUT)

k
X ’ i S : S(xD mek)
v - ;
L1 Ls Sx®k)
€ . q
m ; i v
vy La
ST

Typical boolean masking of order 1

(el e Ciy Exploiting FRAM Memories - November 2013




Masking with Randomized Look Up Tables (RLUT)

[ |
X ’ i S : S(x® mDk)
v =y
L1 — L3 9 Sx®k)
p—
c . q
m " v
vy La
(S

Key addition included in precomputed table Py

(el e Ciy Exploiting FRAM Memories - November 2013




Masking with Randomized Look Up Tables (RLUT)

X&m ——
X » Pk . Pk(x® m)
v v o
L1 ] Ls P Pr(x)
i c ° q
m : V
v V La
R

Key addition included in precomputed table Py

(el e Ciy Exploiting FRAM Memories - November 2013




Masking with Randomized Look Up Tables (RLUT)

al
xdm ’—‘
X L_J P« e Pk(x® m)
v v
Lt Ls a3 =< Px(x)

c . a

» Replace of x @ m operations by G; = x d m P a;
» a; = precomputed random mask

WClL Gty Cioy Exploiting FRAM Memories - November 2013




Masking with Randomized Look Up Tables (RLUT)

X G1 ; Pk : Px(Gi(x,m))
v v
L1 L3 Pi(x)

» Replace of x @ m operations by G; = x d m P a;
» a; = precomputed random mask

WClL Gty Cioy Exploiting FRAM Memories - November 2013



Masking with Randomized Look Up Tables (RLUT)

(el e Ciy Exploiting FRAM Memories - November 2013



Masking with Randomized Look Up Tables (RLUT)

(D) e m)
X G1 e R . R(G1(x,m))
: LQ v L
L1 Ls ‘\iGz/} Pk(x)
i RC —0—‘— q
vy La
B B

(el e Ciy Exploiting FRAM Memories - November 2013



Masking with Randomized Look Up Tables (RLUT)

N Sem
X G1 e R . R(G1(x,m))
v LQ v L
L1 Ls \\iGz/} Pk(x)
i RC —0—‘— q
vy La
B B

» Gi, Gy, R and RC are precomputed

(el e Ciy Exploiting FRAM Memories - November 2013



Masking with Randomized Look Up Tables (RLUT)

N Sem
X G1 e R . R(G1(x,m))
v LQ v L
L1 Ls \\iGz/} Pk(x)
i RC —0—‘— q
vy La
B B

» Gi, Gy, R and RC are precomputed

» Unconditional security if secure precomputations

(el e Ciy Exploiting FRAM Memories - November 2013



Outline

Making New Results Possible: Masking with RLUT
m Description of RLUT contermeasure
m Application to Reduced LED
m Results

(el e Ciy Exploiting FRAM Memories - November 2013 15 ’)




Application to Reduced LED

Reduced version of LED:
» 16-bit state
» 1 to 4 rounds

KEY KEY
e ] P o Ll Py
i 9 5 s £
s—E .|
& s s 13
= =
S —~ s
o - o
Y —
ROUND ROUND

(el e Ciy Exploiting FRAM Memories - November 2013




Application to Reduced LED

Implementation details:
» 16 kB Tl FRAM microcontroller

» LFSR with CRC-32 polynomial used to generate random
variables a;

» Efficient arrangement of the 4-bit precomputed tables in
memory

» MixColumn layer applied on each of the shares

(el e Ciy Exploiting FRAM Memories - November 2013 17 ’;}



Outline

Making New Results Possible: Masking with RLUT
m Description of RLUT contermeasure
m Application to Reduced LED
m Results

(el e Ciy Exploiting FRAM Memories - November 2013 18 ’)




Results - Program Size

= Implementation
7 4000 1, Prediction [SPV 2012]
Z _—
— 3000
I //
(77 / |
£ 2000 S e
o 4"
5 e
4 1000 JPT e =+
0
1 2 3 4

Number of rounds

» Prediction in terms of number of rounds, number of
S-Boxes and S-Box size
» Offset between curves = LED program size

(el e Ciy Exploiting FRAM Memories - November 2013




Results - Precomputation Time

160 000

Cycle count

120 000

80 000

40 000

0

» Implementation A
|| = Prediction [SPV 2012]|| _-~
o
e
//
v -
1 2 3 4

Number of rounds

» Prediction in terms of elementary operations

» Here, 1 elementary operation ~ 40 clock cycles

UCL Crypto Group

Exploiting FRAM Memories - November 2013

4 000

3 000

2 000

1 000

suoljesado Aiejuswa|g

o 8,



Results - Observations

» Memory and time requirements can be predicted for the
parameters of any cipher

» Full LED implementation requires:
» 70 kB of memory (128kB FRAM microcontroller soon

available)
» A precomputation time of 35 ms at 16 MHz

» Possible performances vs security tradeoffs:

» Partial masking with RLUT

» Partial refreshing of the precomputed tables
(e.g.: refreshing 10% of the table takes as much cycles as
order 3 masking scheme)

(el e Ciy Exploiting FRAM Memories - November 2013 21 ’;3




Conclusion

» FRAM enables efficient implementation of
countermeasures needing precomputations

» Improvement for the shuffling countermeasure
» Makes the RLUT masking possible

» If secure precomputation is possible, RLUT provides
unconditional security against side-channel attacks

» Future scope of research:

» Impact of partial recomputation in leaking environment
» Design of block ciphers suited to implementation with
RLUT

(el e Ciy Exploiting FRAM Memories - November 2013




Thank you!

(el e Ciy Exploiting FRAM Memories - November 2013 23 ’)



	Improving Past Results: Shuffling
	What is Shuffling?
	Previous Implementation
	FRAM Implementation

	Making New Results Possible: Masking with RLUT
	Description of RLUT contermeasure
	Application to Reduced LED
	Results

	Conclusion

